|
|
A055713
|
|
Numbers k such that k | sigma_9(k).
|
|
6
|
|
|
1, 6, 38, 42, 54, 114, 120, 135, 168, 190, 216, 222, 266, 270, 280, 285, 312, 342, 378, 456, 496, 540, 570, 672, 728, 760, 798, 840, 888, 945, 1026, 1064, 1080, 1140, 1330, 1512, 1554, 1560, 1710, 1782, 1806, 1862, 1890, 1962, 1976, 1995, 1998, 2160, 2166
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
sigma_9(k) is the sum of the 9th powers of the divisors of k (A013957).
Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..10000
Florian Luca and John Ferdinands, Problem 11090: Sometimes n divides sigma_k(n), Amer. Math. Monthly 113:4 (2006), pp. 372-373.
|
|
MAPLE
|
with(numtheory);
A055713:=proc(q)
local a, i, n;
for n from 1 to q do
a:=divisors(n); if frac(add(a[i]^9, i=1..nops(a))/n)=0 then print(n);
fi; od; end:
A055713(100000); # Paolo P. Lava, Dec 07 2012
|
|
MATHEMATICA
|
Do[If[Mod[DivisorSigma[9, n], n]==0, Print[n]], {n, 1, 5000}]
|
|
PROG
|
(PARI) is(n)=sigma(n, 9)%n==0 \\ Charles R Greathouse IV, Feb 04 2013
|
|
CROSSREFS
|
Cf. A013957.
Cf. A055709, A055710, A055711, A055712.
Sequence in context: A015492 A243843 A039293 * A216384 A352305 A060454
Adjacent sequences: A055710 A055711 A055712 * A055714 A055715 A055716
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert G. Wilson v, Jun 09 2000
|
|
STATUS
|
approved
|
|
|
|