login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055365
Number of asymmetric mobiles (circular rooted trees) with n nodes and 4 leaves.
3
1, 5, 19, 53, 130, 280, 556, 1024, 1788, 2971, 4752, 7338, 11013, 16099, 23020, 32249, 44390, 60109, 80234, 105670, 137520, 176979, 225479, 284562, 356049, 441890, 544360, 665883, 809258, 977455, 1173871, 1402098, 1666212, 1970508, 2319825, 2719248, 3174469
OFFSET
6,2
FORMULA
G.f.: x^6*( -1-2*x-5*x^2-5*x^3-7*x^4-5*x^5-3*x^6-x^7-x^8 ) / ( (x^2+1)*(1+x+x^2)*(1+x)^3*(x-1)^7 ). - R. J. Mathar, Sep 18 2011
a(5-n) = A055279(n) for all n in Z. - Michael Somos, Nov 02 2014
0 = -30 + a(n) - 2*a(n+1) - a(n+2) + 3*a(n+3) + a(n+5) - 2*a(n+6) - 2*a(n+7) + a(n+8) + 3*a(n+10) - a(n+11) - 2*a(n+12) + a(n+13) for all n in Z. - Michael Somos, Nov 02 2014
a(n) ~ n^6 / 1152 as n -> infinity. - Michael Somos, Nov 02 2014
EXAMPLE
G.f. = x^6 + 5*x^7 + 19*x^8 + 53*x^9 + 130*x^10 + 280*x^11 + 556*x^12 + ...
PROG
(PARI) {a(n) = if( n<6, n = -n; polcoeff( (1 + x + 3*x^2 + 5*x^3 + 7*x^4 + 5*x^5 + 5*x^6 + 2*x^7 + x^8) / ((1 - x)^3 * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n), n = n-6; polcoeff( (1 + 2*x + 5*x^2 + 5*x^3 + 7*x^4 + 5*x^5 + 3*x^6 + x^7 + x^8) / ((1 - x)^3 * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n))}; /* Michael Somos, Nov 02 2014 */
CROSSREFS
Column 4 of A055363.
Cf. A055279.
Sequence in context: A015650 A200764 A285987 * A209817 A281156 A060100
KEYWORD
nonn
AUTHOR
Christian G. Bower, May 16 2000
STATUS
approved