OFFSET
6,2
LINKS
FORMULA
G.f.: x^6*( -1-2*x-5*x^2-5*x^3-7*x^4-5*x^5-3*x^6-x^7-x^8 ) / ( (x^2+1)*(1+x+x^2)*(1+x)^3*(x-1)^7 ). - R. J. Mathar, Sep 18 2011
a(5-n) = A055279(n) for all n in Z. - Michael Somos, Nov 02 2014
0 = -30 + a(n) - 2*a(n+1) - a(n+2) + 3*a(n+3) + a(n+5) - 2*a(n+6) - 2*a(n+7) + a(n+8) + 3*a(n+10) - a(n+11) - 2*a(n+12) + a(n+13) for all n in Z. - Michael Somos, Nov 02 2014
a(n) ~ n^6 / 1152 as n -> infinity. - Michael Somos, Nov 02 2014
EXAMPLE
G.f. = x^6 + 5*x^7 + 19*x^8 + 53*x^9 + 130*x^10 + 280*x^11 + 556*x^12 + ...
PROG
(PARI) {a(n) = if( n<6, n = -n; polcoeff( (1 + x + 3*x^2 + 5*x^3 + 7*x^4 + 5*x^5 + 5*x^6 + 2*x^7 + x^8) / ((1 - x)^3 * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n), n = n-6; polcoeff( (1 + 2*x + 5*x^2 + 5*x^3 + 7*x^4 + 5*x^5 + 3*x^6 + x^7 + x^8) / ((1 - x)^3 * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n))}; /* Michael Somos, Nov 02 2014 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, May 16 2000
STATUS
approved