OFFSET
5,2
LINKS
Georg Fischer, Table of n, a(n) for n = 5..129
Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,0,1,2,-3,1).
FORMULA
G.f.: x^5*(x^3+x+1)/((1-x^2)*(1-x^3)*(1-x)^3).
a(n) = A055278(4 - n) for all n in Z. - Michael Somos, Jun 29 2015
EXAMPLE
G.f. = x^5 + 4*x^6 + 10*x^7 + 22*x^8 + 42*x^9 + 73*x^10 + 119*x^11 + ...
MATHEMATICA
a[ n_] := Quotient[ 3 n^4 - 28 n^3 + 102 n^2 - 180 n + 144, 144];
PROG
(PARI) {a(n) = (3*n^4 - 28*n^3 + 102*n^2 - 180*n + 144) \ 144}; /* Michael Somos, Jun 29 2015 */
(PARI) {a(n) = if( n<1, n = -n; polcoeff( (1 + x^2 + x^3) / ((1 - x)^3 * (1 - x^2) * (1 - x^3)) + x * O(x^n), n), polcoeff( x^5 * (1 + x + x^3) / ((1 - x)^3 * (1 - x^2) * (1 - x^3)) + x * O(x^n), n))}; /* Michael Somos, Jun 29 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, May 16 2000
STATUS
approved