Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Mar 16 2022 05:54:22
%S 1,5,19,53,130,280,556,1024,1788,2971,4752,7338,11013,16099,23020,
%T 32249,44390,60109,80234,105670,137520,176979,225479,284562,356049,
%U 441890,544360,665883,809258,977455,1173871,1402098,1666212,1970508,2319825,2719248,3174469
%N Number of asymmetric mobiles (circular rooted trees) with n nodes and 4 leaves.
%H Georg Fischer, <a href="/A055365/b055365.txt">Table of n, a(n) for n = 6..129</a>
%H <a href="/index/Mo#mobiles">Index entries for sequences related to mobiles</a>
%F G.f.: x^6*( -1-2*x-5*x^2-5*x^3-7*x^4-5*x^5-3*x^6-x^7-x^8 ) / ( (x^2+1)*(1+x+x^2)*(1+x)^3*(x-1)^7 ). - _R. J. Mathar_, Sep 18 2011
%F a(5-n) = A055279(n) for all n in Z. - _Michael Somos_, Nov 02 2014
%F 0 = -30 + a(n) - 2*a(n+1) - a(n+2) + 3*a(n+3) + a(n+5) - 2*a(n+6) - 2*a(n+7) + a(n+8) + 3*a(n+10) - a(n+11) - 2*a(n+12) + a(n+13) for all n in Z. - _Michael Somos_, Nov 02 2014
%F a(n) ~ n^6 / 1152 as n -> infinity. - _Michael Somos_, Nov 02 2014
%e G.f. = x^6 + 5*x^7 + 19*x^8 + 53*x^9 + 130*x^10 + 280*x^11 + 556*x^12 + ...
%o (PARI) {a(n) = if( n<6, n = -n; polcoeff( (1 + x + 3*x^2 + 5*x^3 + 7*x^4 + 5*x^5 + 5*x^6 + 2*x^7 + x^8) / ((1 - x)^3 * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n), n = n-6; polcoeff( (1 + 2*x + 5*x^2 + 5*x^3 + 7*x^4 + 5*x^5 + 3*x^6 + x^7 + x^8) / ((1 - x)^3 * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n))}; /* _Michael Somos_, Nov 02 2014 */
%Y Column 4 of A055363.
%Y Cf. A055279.
%K nonn
%O 6,2
%A _Christian G. Bower_, May 16 2000