login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055321
Number of labeled trees with n nodes and 9 leaves.
1
10, 28050, 12315600, 2501070000, 331387056000, 33590279923200, 2844207894528000, 212334102908928000, 14481281691676800000, 924652322084050560000, 56256869188969473024000, 3303981073122303974400000, 189156797595688810567680000, 10636600593905858347776000000
OFFSET
10,1
FORMULA
a(n) = (n!/9!)*Stirling2(n-2, n-9). - Vladeta Jovovic, Jan 28 2004
a(n) = n! * (n-9)^2*(n-8)^2*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(9*n^4 - 270*n^3 + 2967*n^2 - 14098*n + 24352)/2106910310400. - Vaclav Kotesovec, Jul 25 2014
MAPLE
a:= n-> (n!/9!)*Stirling2(n-2, n-9):
seq(a(n), n=10..25); # Alois P. Heinz, Mar 06 2012
MATHEMATICA
Table[n! * (n-9)^2*(n-8)^2*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(9*n^4 - 270*n^3 + 2967*n^2 - 14098*n + 24352)/2106910310400, {n, 10, 25}] (* Vaclav Kotesovec, Jul 25 2014 *)
PROG
(Maxima) A055321(n) := block(
A055314(n, 9)
)$
for n : 10 thru 25 do
print(A055321(n), " ") ; /* R. J. Mathar, Mar 06 2012 */
(PARI) A055321(n)={binomial(n, 9)*sum(i=0, n-=9, (-1)^i*binomial(n, i)*i^(n+7))*(-1)^n} /* or: Stirling2(n-2, n-9)*n!/9!, cf. A008277 */ /* M. F. Hasler, Mar 06 2012 */
(Magma) [Factorial(n)*(n-9)^2*(n-8)^2*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(9*n^4 - 270*n^3 + 2967*n^2 - 14098*n + 24352)/2106910310400: n in [10..25]]; // Vincenzo Librandi, Jul 25 2014
CROSSREFS
Column 9 of A055314.
Sequence in context: A203695 A181017 A360213 * A092300 A375539 A048916
KEYWORD
nonn
AUTHOR
Christian G. Bower, May 11 2000
STATUS
approved