|
|
A054479
|
|
Number of sets of cycle graphs of 2n nodes where the 2-colored edges alternate colors.
|
|
2
|
|
|
1, 0, 6, 120, 6300, 514080, 62785800, 10676746080, 2413521910800, 700039083744000, 253445583029839200, 112033456760809584000, 59382041886244720843200, 37175286835046004765120000, 27139206193305890195912400000, 22852066417535931447551359680000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Also number of permutations in the symmetric group S_2n in which cycle lengths are even and greater than 2, cf. A130915. - Vladeta Jovovic, Aug 25 2007
a(n) is also the number of ordered pairs of disjoint perfect matchings in the complete graph on 2n vertices. The sequence A006712 is the number of ordered triples of perfect matchings. - Matt Larson, Jul 23 2016
|
|
LINKS
|
|
|
FORMULA
|
If b(2n)=a(n) then e.g.f. of b is 1/(sqrt(exp(x^2)*(1-x^2))).
a(n) = 4^n*(n-1)*gamma(n+1/2)^2*hypergeom([2-n],[3/2-n],-1/2)/(Pi*(n-1/2)). - Mark van Hoeij, May 13 2013
|
|
MAPLE
|
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-2*j)*binomial(n-1, 2*j-1)*(2*j-1)!, j=2..n/2))
end:
a:= n-> b(2*n):
|
|
MATHEMATICA
|
Table[(n-1)*(2*n)!^2 * HypergeometricPFQ[{2-n}, {3/2-n}, -1/2] / (4^n*(n-1/2)*(n!)^2), {n, 0, 20}] (* Vaclav Kotesovec, Mar 29 2014 after Mark van Hoeij *)
|
|
PROG
|
(PARI) x='x+O('x^66); v=Vec(serlaplace(1/(sqrt(exp(x^2)*(1-x^2))))); vector(#v\2, n, v[2*n-1]) \\ Joerg Arndt, May 13 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|