login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of sets of cycle graphs of 2n nodes where the 2-colored edges alternate colors.
2

%I #32 Mar 06 2023 22:05:11

%S 1,0,6,120,6300,514080,62785800,10676746080,2413521910800,

%T 700039083744000,253445583029839200,112033456760809584000,

%U 59382041886244720843200,37175286835046004765120000,27139206193305890195912400000,22852066417535931447551359680000

%N Number of sets of cycle graphs of 2n nodes where the 2-colored edges alternate colors.

%C Also number of permutations in the symmetric group S_2n in which cycle lengths are even and greater than 2, cf. A130915. - _Vladeta Jovovic_, Aug 25 2007

%C a(n) is also the number of ordered pairs of disjoint perfect matchings in the complete graph on 2n vertices. The sequence A006712 is the number of ordered triples of perfect matchings. - _Matt Larson_, Jul 23 2016

%H Vincenzo Librandi, <a href="/A054479/b054479.txt">Table of n, a(n) for n = 0..200</a>

%F If b(2n)=a(n) then e.g.f. of b is 1/(sqrt(exp(x^2)*(1-x^2))).

%F a(n) = 4^n*(n-1)*gamma(n+1/2)^2*hypergeom([2-n],[3/2-n],-1/2)/(Pi*(n-1/2)). - _Mark van Hoeij_, May 13 2013

%F a(n) ~ 2^(2*n+1) * n^(2*n) / exp(2*n+1/2). - _Vaclav Kotesovec_, Mar 29 2014

%p b:= proc(n) option remember; `if`(n=0, 1, add(

%p b(n-2*j)*binomial(n-1, 2*j-1)*(2*j-1)!, j=2..n/2))

%p end:

%p a:= n-> b(2*n):

%p seq(a(n), n=0..15); # _Alois P. Heinz_, Mar 06 2023

%t Table[(n-1)*(2*n)!^2 * HypergeometricPFQ[{2-n},{3/2-n},-1/2] / (4^n*(n-1/2)*(n!)^2), {n, 0, 20}] (* _Vaclav Kotesovec_, Mar 29 2014 after _Mark van Hoeij_ *)

%o (PARI) x='x+O('x^66); v=Vec(serlaplace(1/(sqrt(exp(x^2)*(1-x^2))))); vector(#v\2,n,v[2*n-1]) \\ _Joerg Arndt_, May 13 2013

%Y Cf. A001147, A001818, A053871, A006712.

%K nonn

%O 0,3

%A _Christian G. Bower_, Mar 29 2000