login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054192
Binomial transform of A000029.
1
1, 3, 8, 20, 49, 119, 289, 705, 1731, 4283, 10690, 26934, 68531, 176115, 457110, 1198128, 3170607, 8468277, 22818167, 61999531, 169778889, 468292663, 1300270333, 3632269293, 10202425207, 28798822159, 81652955889, 232429744843, 663969970203, 1902716831527
OFFSET
0,2
LINKS
FORMULA
a(n) ~ 3^(n+1) / (4*n). - Vaclav Kotesovec, Nov 02 2023
MAPLE
with(numtheory):
b:= proc(n) option remember; ceil(add(
phi(d)*2^(n/d)/(2*n), d=divisors(n))+
`if`(n::odd, 2^((n-1)/2), 2^(n/2-1)+2^(n/2-2)))
end:
a:= n-> add(b(n-j)*binomial(n, j), j=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 17 2017
MATHEMATICA
a29[n_] := If[n == 0, 1, DivisorSum[n, EulerPhi[#]*2^(n/#)&]/(2*n) + If[OddQ[n], 2^((n-1)/2), 2^(n/2-1) + 2^(n/2-2)]]; a[n_] := Sum[Binomial[n, k] * a29[k], {k, 0, n}]; Array[a, 28, 0] (* Jean-François Alcover, Jul 17 2017 *)
CROSSREFS
Sequence in context: A126876 A090757 A048739 * A124523 A054185 A171853
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 29 2000
STATUS
approved