login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053867
Parity of sum of divisors of n less than n.
2
0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1
OFFSET
1,1
COMMENTS
Partial sums up to n is about n/2. - David A. Corneth, Oct 20 2017
FORMULA
a(n) = A001065(n) mod 2.
a(2n+1) = 1 - A010052(2n+1); a(4n + 2) = 1 - a(2n + 1); a(4n) = a(2n). - David A. Corneth, Oct 20 2017
EXAMPLE
a(9) = 0 because sum of proper divisors of 9 is 1 + 3 = 4 which is an even number.
From David A. Corneth, Oct 20 2017: (Start)
a(25) = 0 because 25 is an odd square. Therefore, a(2*25) = a(50) = 1 - a(25) = 1 and a(100) = a(2*50) = 1.
a(27) = 1 because 17 isn't an odd square. Therefore, a(2*27) = a(54) = 1-a(27) = 0 and a(108) = a(2*54) = 0. (End)
PROG
(PARI) A053867(n) = ((sigma(n)-n)%2); \\ Antti Karttunen, Oct 20 2017
(PARI) first(n) = my(res = vector(n, i, i%2)); forstep(i=1, sqrtint(n), 2, for(j=0, logint(n\i^2, 2), c = i^2 << j; res[c] = 1 - res[c])); res \\ David A. Corneth, Oct 20 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Mar 29 2000
EXTENSIONS
More terms from James A. Sellers, Apr 08 2000
STATUS
approved