login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053729
Self-convolution of 1,4,27,256,3125,46656,... (cf. A000312).
3
1, 8, 70, 728, 9027, 132136, 2254620, 44262200, 987183525, 24718587592, 687457908306, 21034757596184, 702270963692039, 25400848001674856, 989240042333246072, 41263578858484555512, 1835070614332428285513
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} k^k * (n+1-k)^(n+1-k).
a(n) ~ 2 * n^n. - Vaclav Kotesovec, Mar 10 2018
EXAMPLE
a(4) = 1^1 *4^4 +2^2 *3^3 +3^3 *2^2 +4^4 *1^1 = 1*256 +4*27 +27*4 +256*1 = 728.
MATHEMATICA
nn=20; f[x_]=Sum[n^n x^n, {n, 1, nn}]; CoefficientList[Series[f[x]^2/x^2, {x, 0, nn}], x] (* Geoffrey Critzer, Nov 05 2013 *)
Table[Sum[k^k*(n+1-k)^(n+1-k), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 10 2018 *)
PROG
(Python)
def A053729(n): return sum((k**k)*(n+1-k)**(n+1-k) for k in range(1, n+1)) # John Tyler Rascoe, Aug 23 2024
CROSSREFS
Sequence in context: A123511 A322416 A287482 * A266433 A267244 A228388
KEYWORD
nonn,easy
AUTHOR
Leroy Quet, Feb 11 2000
EXTENSIONS
More terms from James A. Sellers, Feb 22 2000
STATUS
approved