login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053662
Numbers k such that 2k+1 divides k!+1.
3
3, 5, 9, 21, 23, 33, 39, 51, 63, 65, 81, 89, 95, 99, 113, 131, 173, 183, 191, 209, 215, 221, 239, 245, 251, 261, 281, 285, 299, 303, 309, 315, 341, 345, 363, 369, 371, 393, 411, 419, 431, 443, 473, 495, 509, 525, 543, 545, 561, 575, 593, 645, 659, 683, 711
OFFSET
1,1
COMMENTS
k+1 divides k!+1 gives primes-1 by Wilson's Theorem. For the present sequence, there are 309 terms below 5000, compared with 669 primes (309/669 = 0.461...). There are 553 terms below 10000, compared with 1229 primes (553/1229 = 0.449...). - Ed Pegg Jr, Dec 05 2001
LINKS
FORMULA
a(n) >> n log n. - Charles R Greathouse IV, Apr 16 2024
MAPLE
A053662:=n->`if`(n!+1 mod (2*n+1) = 0, n, NULL): seq(A053662(n), n=1..1000); # Wesley Ivan Hurt, Dec 01 2015
MATHEMATICA
Drop[Union[Table[If[IntegerQ[(n!+1)/(2n+1)], n], {n, 1, 1000}]], -1] (* Ed Pegg Jr, Dec 05 2001 *)
Select[Range[1000], Mod[#! +1, 2*# +1] == 0 &] (* G. C. Greubel, May 18 2019 *)
PROG
(PARI) for(n=1, 10^3, if((n!+1)%(2*n+1)==0, print1(n, ", ")) ) \\ G. C. Greubel, May 18 2019
(Magma) [n: n in [1..1000] | (Factorial(n)+1) mod (2*n+1) eq 0 ]; // G. C. Greubel, May 18 2019
(Sage) [n for n in (1..1000) if Mod(factorial(n)+1, 2*n+1)==0 ] # G. C. Greubel, May 18 2019
(GAP) Filtered([1..1000], n-> (Factorial(n)+1) mod (2*n+1)=0) # G. C. Greubel, May 18 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Chris K. Caldwell, Feb 16 2000
STATUS
approved