login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053519
Denominators of successive convergents to continued fraction 1+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/(9+9/10+...))))))).
4
1, 3, 15, 29, 597, 4701, 4643, 413691, 4512993, 17926611, 695000919, 9680369943, 4380611853, 2303928046437, 39031251610227, 25940523189513, 1206420504316107, 20365306128628437, 1849040492948486661
OFFSET
0,2
COMMENTS
Also numerators of successive convergents to continued fraction 1/(2+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/9+...))))))).
A053518/A053519 -> (2*e-5)/(3-e) = 1.5496467783... as n-> infinity.
REFERENCES
L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.
LINKS
Leonhardo Eulero, Introductio in analysin infinitorum. Tomus primus, Lausanne, 1748.
L. Euler, Introduction à l'analyse infinitésimale, Tome premier, Tome second, trad. du latin en français par J. B. Labey, Paris, 1796-1797.
M. A. Stern, Theorie der Kettenbrüche und ihre Anwendung, Crelle, 1832, pp. 1-22.
EXAMPLE
Convergents (to the first continued fraction) are 1, 5/3, 23/15, 45/29, 925/597, 7285/4701, ...
MAPLE
for j from 1 to 50 do printf(`%d, `, denom(cfrac([1, seq([i, i+1], i=2..j)]))); od:
MATHEMATICA
num[0]=1; num[1]=5; num[n_] := num[n] = (n+2)*num[n-1] + (n+1)*num[n-2]; den[0]=1; den[1]=3; den[n_] := den[n] = (n+2)*den[n-1] + (n+1)*den[n-2]; a[n_] := Denominator[num[n]/den[n]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 16 2013 *)
CROSSREFS
KEYWORD
nonn,frac,nice,easy
AUTHOR
N. J. A. Sloane, Jan 15 2000
EXTENSIONS
Thanks to R. K. Guy, Steven Finch, Bill Gosper for comments
More terms from James A. Sellers, Feb 02 2000
STATUS
approved