login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of successive convergents to continued fraction 1+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/(9+9/10+...))))))).
4

%I #26 Mar 12 2017 12:25:57

%S 1,3,15,29,597,4701,4643,413691,4512993,17926611,695000919,9680369943,

%T 4380611853,2303928046437,39031251610227,25940523189513,

%U 1206420504316107,20365306128628437,1849040492948486661

%N Denominators of successive convergents to continued fraction 1+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/(9+9/10+...))))))).

%C Also numerators of successive convergents to continued fraction 1/(2+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/9+...))))))).

%C A053518/A053519 -> (2*e-5)/(3-e) = 1.5496467783... as n-> infinity.

%D L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.

%D E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.

%H Leonhardo Eulero, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k69587">Introductio in analysin infinitorum. Tomus primus</a>, Lausanne, 1748.

%H L. Euler, Introduction à l'analyse infinitésimale, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k3884z">Tome premier</a>, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k38858">Tome second</a>, trad. du latin en français par J. B. Labey, Paris, 1796-1797.

%H M. A. Stern, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002138999">Theorie der Kettenbrüche und ihre Anwendung</a>, Crelle, 1832, pp. 1-22.

%e Convergents (to the first continued fraction) are 1, 5/3, 23/15, 45/29, 925/597, 7285/4701, ...

%p for j from 1 to 50 do printf(`%d,`,denom(cfrac([1,seq([i,i+1],i=2..j)]))); od:

%t num[0]=1; num[1]=5; num[n_] := num[n] = (n+2)*num[n-1] + (n+1)*num[n-2]; den[0]=1; den[1]=3; den[n_] := den[n] = (n+2)*den[n-1] + (n+1)*den[n-2]; a[n_] := Denominator[num[n]/den[n]]; Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Jan 16 2013 *)

%Y Cf. A053518, A053520, A053556, A053557.

%K nonn,frac,nice,easy

%O 0,2

%A _N. J. A. Sloane_, Jan 15 2000

%E Thanks to _R. K. Guy_, _Steven Finch_, _Bill Gosper_ for comments

%E More terms from _James A. Sellers_, Feb 02 2000