|
|
A053455
|
|
a(n) = ((8^n) - (-6)^n)/14.
|
|
3
|
|
|
0, 1, 2, 52, 200, 2896, 15392, 169792, 1078400, 10306816, 72376832, 639480832, 4753049600, 40201179136, 308548739072, 2546754076672, 19903847628800, 162051890937856, 1279488468058112, 10337467701133312, 82090381869056000, 660379213392510976, 5261096756499709952, 42220395755839946752
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Previous name was: A linear recursive sequence.
|
|
REFERENCES
|
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (2,48).
|
|
FORMULA
|
a(n) = 2*a(n-1) + 48*a(n-2), n>=2; a(0)=0, a(1)=1.
a(n) = ((8^n)-(-6)^n)/14 = (2^(n-1))*((4^n) - (-3)^n)/7 = (2^(n-1))*A053404(n).
G.f.: x/(1-2*x-48*x^2). - Harvey P. Dale, Nov 28 2011
a(n) = A080921(n). - Philippe Deléham, Mar 05 2014
a(n+1) = Sum_{k=0..n} A238801(n,k)*7^k. - Philippe Deléham, Mar 07 2014
|
|
MAPLE
|
A053455:=n->((8^n)-(-6)^n)/14; seq(A053455(n), n=0..30); # Wesley Ivan Hurt, Mar 07 2014
|
|
MATHEMATICA
|
LinearRecurrence[{2, 48}, {1, 2}, 30] (* Harvey P. Dale, Nov 28 2011 *)
CoefficientList[Series[x / (1 - 2 x - 48 x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Mar 08 2014 *)
|
|
PROG
|
(PARI) a(n) = ((8^n)-(-6)^n)/14; \\ Joerg Arndt, Mar 08 2014
|
|
CROSSREFS
|
Cf. A053404, A051958, A015441, A080921.
Sequence in context: A129742 A105647 A080921 * A297947 A298556 A298766
Adjacent sequences: A053452 A053453 A053454 * A053456 A053457 A053458
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Barry E. Williams, Jan 13 2000
|
|
EXTENSIONS
|
More terms from James A. Sellers, Feb 02 2000
New name (from formula), Joerg Arndt, Mar 05 2014
|
|
STATUS
|
approved
|
|
|
|