login
A053455
a(n) = ((8^n) - (-6)^n)/14.
3
0, 1, 2, 52, 200, 2896, 15392, 169792, 1078400, 10306816, 72376832, 639480832, 4753049600, 40201179136, 308548739072, 2546754076672, 19903847628800, 162051890937856, 1279488468058112, 10337467701133312, 82090381869056000, 660379213392510976, 5261096756499709952, 42220395755839946752
OFFSET
0,3
COMMENTS
Previous name was: A linear recursive sequence.
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = 2*a(n-1) + 48*a(n-2), n>=2; a(0)=0, a(1)=1.
a(n) = ((8^n)-(-6)^n)/14 = (2^(n-1))*((4^n) - (-3)^n)/7 = 2^(n-1)*A053404(n).
G.f.: x/((1+6*x)*(1-8*x)). - Harvey P. Dale, Nov 28 2011
a(n) = A080921(n). - Philippe Deléham, Mar 05 2014
a(n+1) = Sum_{k=0..n} A238801(n,k)*7^k. - Philippe Deléham, Mar 07 2014
MAPLE
A053455:=n->((8^n)-(-6)^n)/14; seq(A053455(n), n=0..30); # Wesley Ivan Hurt, Mar 07 2014
MATHEMATICA
LinearRecurrence[{2, 48}, {1, 2}, 30] (* Harvey P. Dale, Nov 28 2011 *)
CoefficientList[Series[x / (1 - 2 x - 48 x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Mar 08 2014 *)
PROG
(PARI) a(n) = ((8^n)-(-6)^n)/14; \\ Joerg Arndt, Mar 08 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 13 2000
EXTENSIONS
More terms from James A. Sellers, Feb 02 2000
New name (from formula), Joerg Arndt, Mar 05 2014
STATUS
approved