The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053455 a(n) = ((8^n) - (-6)^n)/14. 3
 0, 1, 2, 52, 200, 2896, 15392, 169792, 1078400, 10306816, 72376832, 639480832, 4753049600, 40201179136, 308548739072, 2546754076672, 19903847628800, 162051890937856, 1279488468058112, 10337467701133312, 82090381869056000, 660379213392510976, 5261096756499709952, 42220395755839946752 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Previous name was: A linear recursive sequence. REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (2,48). FORMULA a(n) = 2*a(n-1) + 48*a(n-2), n>=2; a(0)=0, a(1)=1. a(n) = ((8^n)-(-6)^n)/14 = (2^(n-1))*((4^n) - (-3)^n)/7 = 2^(n-1)*A053404(n). G.f.: x/((1+6*x)*(1-8*x)). - Harvey P. Dale, Nov 28 2011 a(n) = A080921(n). - Philippe Deléham, Mar 05 2014 a(n+1) = Sum_{k=0..n} A238801(n,k)*7^k. - Philippe Deléham, Mar 07 2014 MAPLE A053455:=n->((8^n)-(-6)^n)/14; seq(A053455(n), n=0..30); # Wesley Ivan Hurt, Mar 07 2014 MATHEMATICA LinearRecurrence[{2, 48}, {1, 2}, 30] (* Harvey P. Dale, Nov 28 2011 *) CoefficientList[Series[x / (1 - 2 x - 48 x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Mar 08 2014 *) PROG (PARI) a(n) = ((8^n)-(-6)^n)/14; \\ Joerg Arndt, Mar 08 2014 CROSSREFS Cf. A053404, A051958, A015441, A080921. Sequence in context: A129742 A105647 A080921 * A297947 A298556 A298766 Adjacent sequences:  A053452 A053453 A053454 * A053456 A053457 A053458 KEYWORD easy,nonn AUTHOR Barry E. Williams, Jan 13 2000 EXTENSIONS More terms from James A. Sellers, Feb 02 2000 New name (from formula), Joerg Arndt, Mar 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 12:49 EST 2022. Contains 350538 sequences. (Running on oeis4.)