OFFSET
0,3
COMMENTS
Previous name was: A linear recursive sequence.
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (2,48).
FORMULA
a(n) = 2*a(n-1) + 48*a(n-2), n>=2; a(0)=0, a(1)=1.
a(n) = ((8^n)-(-6)^n)/14 = (2^(n-1))*((4^n) - (-3)^n)/7 = 2^(n-1)*A053404(n).
G.f.: x/((1+6*x)*(1-8*x)). - Harvey P. Dale, Nov 28 2011
a(n) = A080921(n). - Philippe Deléham, Mar 05 2014
a(n+1) = Sum_{k=0..n} A238801(n,k)*7^k. - Philippe Deléham, Mar 07 2014
MAPLE
MATHEMATICA
LinearRecurrence[{2, 48}, {1, 2}, 30] (* Harvey P. Dale, Nov 28 2011 *)
CoefficientList[Series[x / (1 - 2 x - 48 x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Mar 08 2014 *)
PROG
(PARI) a(n) = ((8^n)-(-6)^n)/14; \\ Joerg Arndt, Mar 08 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 13 2000
EXTENSIONS
More terms from James A. Sellers, Feb 02 2000
New name (from formula), Joerg Arndt, Mar 05 2014
STATUS
approved