login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052038
First nonzero digit in expansion of 1/n.
4
1, 5, 3, 2, 2, 1, 1, 1, 1, 1, 9, 8, 7, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9
OFFSET
1,2
COMMENTS
The number of times each digit occurs for numbers < 10^k:
...\a(n)==1.........2.......3........4........5........6........7........8........9
10^k\
1.........5.........2........1........0........1........0........0........0........0
2........55........19........9........5........5........2........2........1........1
3.......555.......186.......92.......55.......39.......26.......19.......15.......12
4......5555......1853......925......555......373......264......197......154......123
5.....55555.....18520.....9258.....5555.....3707.....2645.....1982.....1543.....1234
6....555556....185187....92591....55555....37041....26454....19839....15432....12345
7...5555555...1851854...925924...555555...370375...264549...198410...154321...123456
8..55555555..18518521..9259257..5555555..3703709..2645501..1984124..1543210..1234567
9.555555555.185185188.92592590.55555555.37037043.26455025.19841266.15432099.12345678
...
Inf. ...5/9......5/27.....5/54.....5/90.....1/27........?........?........?........?
FORMULA
a(n) = floor(10^floor(1+log_10(n-1))/n). After 10^k terms the number of times m will have appeared will be about 10^(k+1)/(9*m*(m+1)), e.g., 1 will appear just over 55.5% of the time. - Henry Bottomley, May 11 2001
a(n) = A000030(floor(A011557(k)/n)) for k >= A004218(n). - Reinhard Zumkeller, Feb 27 2011
MATHEMATICA
f[n_] := RealDigits[1/n, 10, 12][[1, 1]]; Array[f, 105]
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Patrick De Geest, Dec 15 1999
STATUS
approved