Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 07 2019 03:26:30
%S 1,5,3,2,2,1,1,1,1,1,9,8,7,7,6,6,5,5,5,5,4,4,4,4,4,3,3,3,3,3,3,3,3,2,
%T 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,9,9,9,9,9
%N First nonzero digit in expansion of 1/n.
%C The number of times each digit occurs for numbers < 10^k:
%C ...\a(n)==1.........2.......3........4........5........6........7........8........9
%C 10^k\
%C 1.........5.........2........1........0........1........0........0........0........0
%C 2........55........19........9........5........5........2........2........1........1
%C 3.......555.......186.......92.......55.......39.......26.......19.......15.......12
%C 4......5555......1853......925......555......373......264......197......154......123
%C 5.....55555.....18520.....9258.....5555.....3707.....2645.....1982.....1543.....1234
%C 6....555556....185187....92591....55555....37041....26454....19839....15432....12345
%C 7...5555555...1851854...925924...555555...370375...264549...198410...154321...123456
%C 8..55555555..18518521..9259257..5555555..3703709..2645501..1984124..1543210..1234567
%C 9.555555555.185185188.92592590.55555555.37037043.26455025.19841266.15432099.12345678
%C ...
%C Inf. ...5/9......5/27.....5/54.....5/90.....1/27........?........?........?........?
%F a(n) = floor(10^floor(1+log_10(n-1))/n). After 10^k terms the number of times m will have appeared will be about 10^(k+1)/(9*m*(m+1)), e.g., 1 will appear just over 55.5% of the time. - _Henry Bottomley_, May 11 2001
%F a(n) = A000030(floor(A011557(k)/n)) for k >= A004218(n). - _Reinhard Zumkeller_, Feb 27 2011
%t f[n_] := RealDigits[1/n, 10, 12][[1, 1]]; Array[f, 105]
%Y Cf. A052039, A033330, A033420, A061861.
%K nonn,base,easy
%O 1,2
%A _Patrick De Geest_, Dec 15 1999