login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052013
Primes that are congruent to -1 mod n, where n is the index of the prime.
7
2, 3, 5, 7, 29, 349, 359, 1091, 3079, 8423, 64579, 64609, 64709, 481043, 481067, 3524317, 3524387, 9559799, 9560009, 9560039, 25874767, 70115921, 189962009, 189962189, 189964241, 189964259, 189964331, 189964367, 189968741, 189968921
OFFSET
1,1
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..108 (first 53 terms from Charles R Greathouse IV)
FORMULA
a(n) = prime(A045924(n)). - Michel Marcus, Jan 09 2015
EXAMPLE
29 is the tenth prime and 29 == -1 mod 10, so 29 is in the sequence.
31 is the eleventh prime but 31 == 9 mod 11, so 31 is not in the sequence.
MATHEMATICA
divbleQ[m_, n_] := Mod[m, n] == 0; A052013 = {}; Do[p = Prime[n]; If[divbleQ[p + 1, n], AppendTo[A052013, p]], {n, 10!}]; A052013 (* Vladimir Joseph Stephan Orlovsky, Dec 08 2009 *)
Select[Prime[Range[5000]], Divisible[# + 1, PrimePi[#]] &] (* Alonso del Arte, May 12 2017 *)
Select[Table[{n, Prime[n]}, {n, 1056*10^4}], Mod[#[[2]], #[[1]]]==#[[1]]-1&][[All, 2]] (* Harvey P. Dale, Oct 29 2022 *)
PROG
(PARI) lista(nn) = forprime(p=2, nn, if (Mod(p, primepi(p)) + 1 == 0, print1(p, ", "))) \\ Michel Marcus, Jan 09 2015
(PARI) list(lim)=my(v=List(), n, t); forprime(p=2, lim, t=(p+1)/n++; if(denominator(t)==1, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 18 2016
CROSSREFS
Subsequence of A162567.
Sequence in context: A082257 A054750 A048404 * A269022 A174536 A054797
KEYWORD
nonn
AUTHOR
Patrick De Geest, Nov 15 1999
STATUS
approved