login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A052013
Primes that are congruent to -1 mod n, where n is the index of the prime.
7
2, 3, 5, 7, 29, 349, 359, 1091, 3079, 8423, 64579, 64609, 64709, 481043, 481067, 3524317, 3524387, 9559799, 9560009, 9560039, 25874767, 70115921, 189962009, 189962189, 189964241, 189964259, 189964331, 189964367, 189968741, 189968921
OFFSET
1,1
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..108 (first 53 terms from Charles R Greathouse IV)
FORMULA
a(n) = prime(A045924(n)). - Michel Marcus, Jan 09 2015
EXAMPLE
29 is the tenth prime and 29 == -1 mod 10, so 29 is in the sequence.
31 is the eleventh prime but 31 == 9 mod 11, so 31 is not in the sequence.
MATHEMATICA
divbleQ[m_, n_] := Mod[m, n] == 0; A052013 = {}; Do[p = Prime[n]; If[divbleQ[p + 1, n], AppendTo[A052013, p]], {n, 10!}]; A052013 (* Vladimir Joseph Stephan Orlovsky, Dec 08 2009 *)
Select[Prime[Range[5000]], Divisible[# + 1, PrimePi[#]] &] (* Alonso del Arte, May 12 2017 *)
Select[Table[{n, Prime[n]}, {n, 1056*10^4}], Mod[#[[2]], #[[1]]]==#[[1]]-1&][[All, 2]] (* Harvey P. Dale, Oct 29 2022 *)
PROG
(PARI) lista(nn) = forprime(p=2, nn, if (Mod(p, primepi(p)) + 1 == 0, print1(p, ", "))) \\ Michel Marcus, Jan 09 2015
(PARI) list(lim)=my(v=List(), n, t); forprime(p=2, lim, t=(p+1)/n++; if(denominator(t)==1, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 18 2016
CROSSREFS
Subsequence of A162567.
Sequence in context: A082257 A054750 A048404 * A269022 A174536 A054797
KEYWORD
nonn
AUTHOR
Patrick De Geest, Nov 15 1999
STATUS
approved