login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051093
Primes p such that x^48 = -2 has a solution mod p.
2
2, 3, 11, 43, 59, 83, 107, 131, 179, 227, 251, 257, 281, 283, 307, 347, 419, 443, 467, 491, 499, 563, 587, 617, 643, 659, 683, 691, 739, 811, 827, 947, 971, 1019, 1049, 1051, 1091, 1097, 1163, 1187, 1193, 1259, 1283, 1307, 1427, 1451, 1459, 1481, 1499, 1523
OFFSET
1,1
COMMENTS
Complement of A216769 relative to A000040. - Vincenzo Librandi, Sep 17 2012
LINKS
MAPLE
isA051093 := proc(p) local x; for x from 0 to p-1 do if (x^48 mod p) = (-2 mod p) then RETURN(true) ; fi; od: RETURN(false) ; end: for i from 1 to 300 do p := ithprime(i) ; if isA051093(p) then printf("%d, ", p) ; fi; od: # R. J. Mathar, Oct 15 2008
MATHEMATICA
ok[p_]:= Reduce[Mod[x^48 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
PROG
(PARI) /* see A051071 */
(Magma) [p: p in PrimesUpTo(1550) | exists(t){x : x in ResidueClassRing(p) | x^48 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
CROSSREFS
Sequence in context: A051075 A051087 A051081 * A107327 A162101 A128455
KEYWORD
nonn,easy
EXTENSIONS
Extended by R. J. Mathar, Oct 15 2008
STATUS
approved