login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051081
Primes p such that x^24 = -2 has a solution mod p.
2
2, 3, 11, 43, 59, 83, 107, 131, 179, 227, 251, 257, 281, 283, 307, 347, 419, 443, 467, 491, 499, 563, 587, 617, 643, 659, 683, 691, 739, 811, 827, 881, 947, 971, 1019, 1049, 1051, 1091, 1097, 1163, 1187, 1193, 1217, 1259, 1283, 1307, 1427, 1451, 1459, 1481
OFFSET
1,1
COMMENTS
Complement of A216743 relative to A000040. - Vincenzo Librandi, Sep 17 2012
LINKS
MAPLE
isA051081 := proc(p) local x; for x from 0 to p-1 do if (x^24 mod p) = (-2 mod p) then RETURN(true) ; fi; od: RETURN(false) ; end: for i from 1 to 300 do p := ithprime(i) ; if isA051081(p) then printf("%d, ", p) ; fi; od: # R. J. Mathar, Oct 15 2008
MATHEMATICA
ok[p_]:= Reduce[Mod[x^24 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
PROG
(PARI) /* see A051071 */
(Magma) [p: p in PrimesUpTo(1500) | exists(t){x : x in ResidueClassRing(p) | x^24 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
CROSSREFS
Sequence in context: A055692 A051075 A051087 * A051093 A107327 A162101
KEYWORD
nonn,easy
EXTENSIONS
More terms from R. J. Mathar, Oct 15 2008
STATUS
approved