login
A051071
Primes p such that x^4 = -2 has a solution mod p.
25
2, 3, 11, 19, 43, 59, 67, 73, 83, 89, 107, 113, 131, 139, 163, 179, 211, 227, 233, 251, 257, 281, 283, 307, 331, 337, 347, 353, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 577, 587, 593, 601, 617, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 881, 883, 907, 937, 947, 971, 1019, 1033, 1049, 1051, 1091, 1097, 1123
OFFSET
1,1
COMMENTS
Complement of A216690 relative to A000040. - Vincenzo Librandi, Sep 16 2012
LINKS
MATHEMATICA
ok[p_]:= Reduce[Mod[x^4 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
PROG
(PARI)
forprime(p=2, 2000, if([]~!=polrootsff(x^4+2, p, y-1), print1(p, ", "))); print();
/* or: */
forprime(p=2, 2000, if([]~!=polrootsmod(x^4+2, p), print1(p, ", "))); print();
/* faster */ /* Joerg Arndt, Jul 27 2011 */
(Magma) [p: p in PrimesUpTo(1200) | exists(t){x : x in ResidueClassRing(p) | x^4 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
CROSSREFS
Sequence in context: A213894 A294668 A095282 * A051095 A051073 A051077
KEYWORD
nonn,easy
EXTENSIONS
More terms from Joerg Arndt, Jul 27 2011
STATUS
approved