login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051074
Primes p such that x^10 = -2 has a solution mod p.
2
2, 3, 17, 19, 43, 59, 67, 73, 83, 89, 97, 107, 113, 137, 139, 163, 179, 193, 227, 233, 241, 251, 257, 283, 307, 313, 337, 347, 353, 379, 409, 419, 433, 443, 449, 457, 467, 499, 523, 547, 563, 569, 571, 577, 587, 593, 617, 619, 641, 643, 659, 673, 683, 739, 769, 787, 809, 827, 857, 859, 883, 907, 929, 937, 947, 953, 971, 977, 1009
OFFSET
1,1
COMMENTS
Complement of A216736 relative to A000040. - Vincenzo Librandi, Sep 16 2012
LINKS
MATHEMATICA
ok[p_]:= Reduce[Mod[x^10 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
PROG
(PARI)
forprime(p=2, 2000, if([]~!=polrootsmod(x^10+2, p), print1(p, ", "))); print();
/* Joerg Arndt, Jun 24 2012 */
(Magma) [p: p in PrimesUpTo(1200) | exists(t){x : x in ResidueClassRing(p) | x^10 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
CROSSREFS
Sequence in context: A215360 A215380 A215376 * A051094 A154274 A235628
KEYWORD
nonn,easy
EXTENSIONS
More terms from Joerg Arndt, Jul 27 2011
STATUS
approved