login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050356 Number of ordered factorizations of n with 2 levels of parentheses. 4
1, 1, 1, 4, 1, 7, 1, 16, 4, 7, 1, 40, 1, 7, 7, 64, 1, 40, 1, 40, 7, 7, 1, 208, 4, 7, 16, 40, 1, 73, 1, 256, 7, 7, 7, 292, 1, 7, 7, 208, 1, 73, 1, 40, 40, 7, 1, 1024, 4, 40, 7, 40, 1, 208, 7, 208, 7, 7, 1, 544, 1, 7, 40, 1024, 7, 73, 1, 40, 7, 73, 1, 1840, 1, 7, 40, 40, 7, 73, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

FORMULA

Dirichlet g.f.: (3-2*zeta(s))/(4-3*zeta(s)).

a(p^k) = 4^(k-1).

a(A002110(n)) = A050352(n).

Sum_{k=1..n} a(k) ~ -n^r / (9*r*Zeta'(r)), where r = 2.52138975790328306967497455387140053675965539610041801606891036... is the root of the equation Zeta(r) = 4/3. - Vaclav Kotesovec, Feb 02 2019

EXAMPLE

For n=6 we have ((6)) = ((3*2)) = ((2*3)) = ((3)*(2)) = ((2)*(3)) = ((3))*((2)) = ((2))*((3)), thus a(6) = 7.

PROG

(PARI)

A050356aux(n) = if(1==n, 1/3, 3*sumdiv(n, d, if(d<n, A050356aux(d), 0)));

A050356(n) = if(1==n, n, A050356aux(n)); \\ Antti Karttunen, May 19 2017, after the general recurrence given by Vladeta Jovovic May 25 2005 in A050354.

CROSSREFS

Cf. A002033, A050351, A050352, A050353, A050354, A050355, A050357, A050358, A050359.

Sequence in context: A329347 A348981 A340073 * A245838 A158860 A335619

Adjacent sequences:  A050353 A050354 A050355 * A050357 A050358 A050359

KEYWORD

nonn

AUTHOR

Christian G. Bower, Oct 15 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 4 06:54 EDT 2022. Contains 357237 sequences. (Running on oeis4.)