login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A049107
a(n) = Euler phi function applied 5 times to n.
8
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 4, 1, 4, 1, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 4, 2, 4, 2, 2
OFFSET
1,41
LINKS
FORMULA
a(n) = A000010(A049100(n)) = A010554(A049099(n)) = phi(phi(phi(phi(phi(n))))), where phi = A000010. - Antti Karttunen, Aug 22 2017
EXAMPLE
For n = 163, the successive iterates applying Euler totient function are as follows: 163, 162, 54, 18, 6, 2, 1. The 6th term is 2, when Phi was applied 5 times. So a(163)=2, already a power of 2.
For n = 487, the successive iterates are 486, 162, 54, 18, 6, 2, 1. On the fifth iteration we reach 6, thus a(487) = 6. This is also the first term of A049107 that is not a power of 2. - Antti Karttunen, Aug 22 2017
MATHEMATICA
a(n)=Nest[ EulerPhi, n, 5 ]
Nest[EulerPhi, Range[110], 5] (* Harvey P. Dale, May 19 2019 *)
PROG
(PARI) A049107(n) = eulerphi(eulerphi(eulerphi(eulerphi(eulerphi(n))))); \\ Antti Karttunen, Aug 22 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved