login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049100
a(n) = Euler phi function applied 4 times to n.
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 1, 4, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 4, 8, 2, 8, 2, 4, 4, 8, 2, 4, 4, 4, 4, 4, 4, 8, 2, 4, 4, 8, 4, 8, 4, 4
OFFSET
1,17
LINKS
Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732 [math.CO], 2012.
FORMULA
a(n) = phi(phi(phi(phi(n)))) = A000010(A000010(A000010(A000010(n)))) = A010554(A010554(n)) = A000010(A049099(n)).
EXAMPLE
n=163, the successive iterates applying Euler totient function are as follows: 163,162,54,18,6,2,1. The 5th term is 6, when Phi was applied 4 times. So a(163)=6.
MAPLE
with(numtheory): seq(phi(phi(phi(phi(n)))), n=1..130); # Emeric Deutsch, May 14 2006
MATHEMATICA
a(n)=Nest[ EulerPhi, n, 4 ]
PROG
(PARI) A049100(n) = eulerphi(eulerphi(eulerphi(eulerphi(n)))); \\ Antti Karttunen, Aug 22 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 23 2007
STATUS
approved