

A049030


Sum of sigma(j) for 1<=j<10^n, where sigma(j) = A048050(j) is the sum of the proper divisors >1 of j (excluding 1 and n).


1



16, 3034, 320243, 32226805, 3224444759, 322465138002, 32246681892518, 3224670122682648, 322467031114802292, 32246703322412473945, 3224670334023621455211, 322467033422357645316809, 32246703342390510922780778, 3224670334240928188556405242
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..36 (calculated from the bfile at A049000)
Carlos Rivera, Problem 23. Divisors (V) Aliquot sequences, Sociable Numbers, Prime Puzzles and Problems Connection.


FORMULA

At a(3) = 320243, for example, take a(3) from A049000: 820741  500498 = 320243. Compute 500498 from 999*1000/2 = 499500, split evenly and reverse to 500499  1 = 500498. Add a 9 and 0 for each successive term.
a(n) = A049000(n)  10^n * (10^n + 1) / 2 + 2 ~ (Pi^2/12  1/2) * 10^(2*n).  Amiram Eldar, Feb 16 2020


EXAMPLE

For n = 1, the sum of sigma(j), for j < 10 is 0 + 0 + 0 + 2 + 0 + 5 + 0 + 6 + 3 = 16, so a(1) = 16.


CROSSREFS

Cf. A001065, A046915, A048050, A048995, A049000.
Cf. A072691 (Pi^2/12).
Sequence in context: A221253 A123282 A091160 * A223068 A051551 A307930
Adjacent sequences: A049027 A049028 A049029 * A049031 A049032 A049033


KEYWORD

base,nonn


AUTHOR

Enoch Haga and Jud McCranie


EXTENSIONS

More terms from Amiram Eldar, Feb 16 2020


STATUS

approved



