login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048743
Triangle a(n,k) = k!*C(n-1,k-1)*Stirling_2(n,k), 1<=k<=n.
2
1, 1, 2, 1, 12, 6, 1, 42, 108, 24, 1, 120, 900, 960, 120, 1, 310, 5400, 15600, 9000, 720, 1, 756, 27090, 168000, 252000, 90720, 5040, 1, 1778, 121716, 1428840, 4410000, 4021920, 987840, 40320, 1, 4080, 508200, 10442880, 58388400, 106686720
OFFSET
1,3
EXAMPLE
The 3rd row is formed from [ 1,2,6,24 ]*[ 1,3,3,1 ]*[ 1,7,6,1 ] => [ 1,42,108,24 ].
1;
1,2;
1,12,6;
1,42,108,24;
1,120,900,960,120;
MAPLE
A048743 := proc(n, k) k!*binomial(n-1, k-1)*combinat[stirling2](n, k) ; end proc:
seq(seq(A048743(n, k), k=1..n), n=1..12) ; # R. J. Mathar, Aug 30 2011
MATHEMATICA
Flatten[Table[k!Binomial[n-1, k-1]StirlingS2[n, k], {n, 10}, {k, n}]] (* Harvey P. Dale, Feb 21 2013 *)
CROSSREFS
Cf. A007318, A008277. Row sums give A045531.
Sequence in context: A332749 A342430 A181417 * A049055 A276998 A222866
KEYWORD
easy,nonn,tabl
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Apr 22 2000
STATUS
approved