login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle a(n,k) = k!*C(n-1,k-1)*Stirling_2(n,k), 1<=k<=n.
2

%I #11 Aug 02 2015 21:40:55

%S 1,1,2,1,12,6,1,42,108,24,1,120,900,960,120,1,310,5400,15600,9000,720,

%T 1,756,27090,168000,252000,90720,5040,1,1778,121716,1428840,4410000,

%U 4021920,987840,40320,1,4080,508200,10442880,58388400,106686720

%N Triangle a(n,k) = k!*C(n-1,k-1)*Stirling_2(n,k), 1<=k<=n.

%e The 3rd row is formed from [ 1,2,6,24 ]*[ 1,3,3,1 ]*[ 1,7,6,1 ] => [ 1,42,108,24 ].

%e 1;

%e 1,2;

%e 1,12,6;

%e 1,42,108,24;

%e 1,120,900,960,120;

%p A048743 := proc(n,k) k!*binomial(n-1,k-1)*combinat[stirling2](n,k) ; end proc:

%p seq(seq(A048743(n,k),k=1..n),n=1..12) ; # _R. J. Mathar_, Aug 30 2011

%t Flatten[Table[k!Binomial[n-1,k-1]StirlingS2[n,k],{n,10},{k,n}]] (* _Harvey P. Dale_, Feb 21 2013 *)

%Y Cf. A007318, A008277. Row sums give A045531.

%K easy,nonn,tabl

%O 1,3

%A _Alford Arnold_

%E More terms from _James A. Sellers_, Apr 22 2000