login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048396
Sums of consecutive noncubes.
5
0, 27, 315, 1638, 5670, 15345, 35217, 71820, 134028, 233415, 384615, 605682, 918450, 1348893, 1927485, 2689560, 3675672, 4931955, 6510483, 8469630, 10874430, 13796937, 17316585, 21520548, 26504100, 32370975, 39233727, 47214090, 56443338, 67062645, 79223445
OFFSET
0,2
COMMENTS
Relation with triangular numbers: a(n) = 3*((n^3+1) + ((n+1)^3-1)) * A000217(n). Example: a(3) = 3*(first term + last term)*A000217(3) = 3*(28+63)*6 = 1638.
FORMULA
a(n) = ( 6n^5 + 15n^4 + 18n^3 + 12n^2 + 3n ) / 2.
G.f.: 9*x*(1+x)*(3+14*x+3*x^2)/(1-x)^6. - Colin Barker, Mar 15 2012
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Wesley Ivan Hurt, Apr 10 2015
EXAMPLE
Between 3^3 and 4^3 we have: 28 + 29 + ... + 62 + 63 = 1638 = a(3).
MAPLE
A048396:=n->(6*n^5+15*n^4+18*n^3+12*n^2+3*n)/2: seq(A048396(n), n=0..50); # Wesley Ivan Hurt, Apr 10 2015
MATHEMATICA
Table[Total[Range[n^3+1, (n+1)^3-1]], {n, 0, 30}] (* Harvey P. Dale, Jan 08 2011 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 27, 315, 1638, 5670, 15345}, 40] (* Harvey P. Dale, Nov 02 2024 *)
PROG
(Magma) [(6*n^5+15*n^4+18*n^3+12*n^2+3*n)/2 : n in [0..50]]; // Wesley Ivan Hurt, Apr 10 2015
(PARI) a(n)=(6*n^5+15*n^4+18*n^3+12*n^2+3*n)/2 \\ Charles R Greathouse IV, Oct 07 2015
(Python)
def A048396(n): return n*(n*(n*(n*(6*n + 15) + 18) + 12) + 3)>>1 # Chai Wah Wu, Sep 04 2024
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Patrick De Geest, Mar 15 1999
STATUS
approved