login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047805
Duplicate of A008695.
0
1, 288, 189648, 16845696, 397610064, 4630772160, 34415914176, 187485113088, 814904105040, 2975518758816, 9486517914720, 27053099888256, 70486130167488, 169930928938176, 384163702086528
OFFSET
0,2
COMMENTS
Original title: Theta series of Niemeier lattice of type E_6^4.
FORMULA
This series is the q-expansion of 3/4 E_4(z)^3 + 1/4 E_6(z)^2. Cf. A004009, A013973.
MATHEMATICA
terms = 15; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 3/4 E4[q]^3 + 1/4 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017 *)
CROSSREFS
Equal to theta series of A_11 D_7 E_6, cf. A008695
Sequence in context: A282102 A159299 A008695 * A173150 A282332 A291187
KEYWORD
dead
EXTENSIONS
More terms and formula in terms of Eisenstein series from Daniel D. Briggs, Nov 25 2011
STATUS
approved