login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Duplicate of A008695.
0

%I #22 Feb 18 2023 07:30:07

%S 1,288,189648,16845696,397610064,4630772160,34415914176,187485113088,

%T 814904105040,2975518758816,9486517914720,27053099888256,

%U 70486130167488,169930928938176,384163702086528

%N Duplicate of A008695.

%C Original title: Theta series of Niemeier lattice of type E_6^4.

%F This series is the q-expansion of 3/4 E_4(z)^3 + 1/4 E_6(z)^2. Cf. A004009, A013973.

%t terms = 15; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 3/4 E4[q]^3 + 1/4 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* _Jean-François Alcover_, Jul 06 2017 *)

%Y Equal to theta series of A_11 D_7 E_6, cf. A008695

%K dead

%O 0,2

%A _N. J. A. Sloane_

%E More terms and formula in terms of Eisenstein series from _Daniel D. Briggs_, Nov 25 2011