|
|
|
|
1, 144, 193104, 16809408, 397822032, 4630076640, 34416785088, 187487524224, 814891939920, 2975535123408, 9486534607200, 27053022904128, 70486183583424, 169931012132448, 384163644219264, 820166796086400
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Original title: Theta series of Niemeier lattice of type A_5^4*D_4.
|
|
LINKS
|
Table of n, a(n) for n=0..15.
|
|
FORMULA
|
This series is the q-expansion of 2/3 E_4(z)^3 + 1/3 E_6(z)^2. Cf. A004009, A013973. - Daniel D. Briggs, Nov 25 2011
|
|
MATHEMATICA
|
terms = 16; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 2/3 E4[q]^3 + 1/3 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017 *)
|
|
CROSSREFS
|
Equal to the theta series of D_4^6, A008700.
Sequence in context: A159724 A221124 A008700 * A023112 A159424 A013751
Adjacent sequences: A047804 A047805 A047806 * A047808 A047809 A047810
|
|
KEYWORD
|
nonn,dead
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jul 05 2000
|
|
STATUS
|
approved
|
|
|
|