login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046142 Haüy rhombic dodecahedral numbers. 5
1, 33, 185, 553, 1233, 2321, 3913, 6105, 8993, 12673, 17241, 22793, 29425, 37233, 46313, 56761, 68673, 82145, 97273, 114153, 132881, 153553, 176265, 201113, 228193, 257601, 289433, 323785, 360753, 400433, 442921, 488313, 536705, 588193, 642873, 700841 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The Haüy rhombic dodecahedral formula is remarkably similar to that of A254473, the 24-hedral numbers: a(n) = (2*n+1)*(8*n^2+14*n+7). Compare with (2*n-1)*(8*n^2-14*n+7); the differences are simple: (1) the first factor of the dodecahedral formula has "+1" and the 24-hedral formula has "-1"; (2) the second factor of the former has "-14n" and the latter has "+14n". Note that the rhombic dodecahedron has 24 edges. The difference between these sequences is diff(n) = 72*n^2 + 14. - Peter M. Chema, Jan 09 2016

REFERENCES

H. Steinhaus, Mathematical Snapshots, 3rd ed. New York: Dover, pp. 185-186, 1999.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

R.-J. Haüy, Essai d'une théorie sur la structure des crystaux appliquée à plusieurs genres de substances crystallisées, 1784.

Jonathan Vos Post, Table of Polytope Numbers, Sorted, Through 1,000,000 which lists Haüy rhombic dodecahedral numbers as "RhoDod(n)."

Eric Weisstein's World of Mathematics, Hauy Construction

Eric Weisstein's World of Mathematics, Rhombic Dodecahedral Number

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = (2*n - 1)*(8*n^2 - 14*n + 7).

G.f.: x*(7*x^3 +59*x^2 +29*x +1)/(1-x)^4. - Colin Barker, Oct 26 2012

a(n) = A016755(n) + A069072(n-1). - Luciano Ancora, Mar 23 2015

a(n) = A016755(n) + 6*A000447(n-1). - Luciano Ancora, Mar 23 2015

a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>4. - Wesley Ivan Hurt, Mar 02 2016

E.g.f.: (-7 +8*x +12*x^2 +16*x^3)*exp(x) + 7. - G. C. Greubel, Nov 04 2017

MAPLE

A046142:=n->(2*n-1)*(8*n^2-14*n+7): seq(A046142(n), n=1..50); # Wesley Ivan Hurt, Mar 02 2016

MATHEMATICA

Table[(2 n - 1) (8 n^2 - 14 n + 7), {n, 40}] (* Vincenzo Librandi, Mar 29 2015 *)

LinearRecurrence[{4, -6, 4, -1}, {1, 33, 185, 553}, 20] (* Eric W. Weisstein, Sep 27 2017 *)

CoefficientList[Series[(1 + 29 x + 59 x^2 + 7 x^3)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)

PROG

(PARI) Vec(x*(7*x^3+59*x^2+29*x+1)/(x-1)^4 + O(x^50)) \\ Michel Marcus, Mar 24 2015

(MAGMA) [(2*n-1)*(8*n^2-14*n+7): n in [1..40]]; // Vincenzo Librandi, Mar 29 2015

CROSSREFS

Cf. A000447, A001845, A016755, A069072, A254473.

Sequence in context: A279867 A230650 A231360 * A135827 A189180 A209531

Adjacent sequences:  A046139 A046140 A046141 * A046143 A046144 A046145

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 17:26 EDT 2019. Contains 328303 sequences. (Running on oeis4.)