login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045878
Numbers k such that rotating digits of k^2 left once still yields a square.
4
1, 2, 3, 12, 14, 25, 108, 122, 216, 310, 1222, 2028, 2527, 3042, 11802, 12222, 13704, 24865, 25185, 26053, 30494, 122222, 208148, 247137, 312222, 1125786, 1222222, 1325080, 2084388, 2551071, 3025794, 3037736, 3126582, 10716846, 10787208
OFFSET
1,2
COMMENTS
Squares resulting in leading zeros are excluded.
A090843 is a subsequence. - Chai Wah Wu, Apr 23 2022
LINKS
Eric Weisstein's World of Mathematics, Square Number
EXAMPLE
11303148^2 = {1}27761154709904 -> 277611547099041{1} = 16661679^2.
MATHEMATICA
rlsQ[n_]:=Module[{idnrl=RotateLeft[IntegerDigits[n^2]]}, First[idnrl]>0 && IntegerQ[Sqrt[FromDigits[idnrl]]]]; Select[Range[11000000], rlsQ] (* Harvey P. Dale, Nov 03 2013 *)
PROG
(Python)
from itertools import count, islice
from sympy.solvers.diophantine.diophantine import diop_DN
def A045878_gen(): # generator of terms
for l in count(0):
l1, l2 = 10**(l+1), 10**l
yield from sorted(set(abs(y) for z in (diop_DN(10, m*(1-l1)) for m in range(10)) for x, y in z if l1 >= x**2 >= l2))
A045878_list = list(islice(A045878_gen(), 30)) # Chai Wah Wu, Apr 23 2022
CROSSREFS
KEYWORD
nonn,base
EXTENSIONS
More terms from Patrick De Geest, Nov 15 1998
STATUS
approved