login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that rotating digits of k^2 left once still yields a square.
4

%I #20 Apr 24 2022 01:23:02

%S 1,2,3,12,14,25,108,122,216,310,1222,2028,2527,3042,11802,12222,13704,

%T 24865,25185,26053,30494,122222,208148,247137,312222,1125786,1222222,

%U 1325080,2084388,2551071,3025794,3037736,3126582,10716846,10787208

%N Numbers k such that rotating digits of k^2 left once still yields a square.

%C Squares resulting in leading zeros are excluded.

%C A090843 is a subsequence. - _Chai Wah Wu_, Apr 23 2022

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SquareNumber.html">Square Number</a>

%e 11303148^2 = {1}27761154709904 -> 277611547099041{1} = 16661679^2.

%t rlsQ[n_]:=Module[{idnrl=RotateLeft[IntegerDigits[n^2]]},First[idnrl]>0 && IntegerQ[Sqrt[FromDigits[idnrl]]]]; Select[Range[11000000],rlsQ] (* _Harvey P. Dale_, Nov 03 2013 *)

%o (Python)

%o from itertools import count, islice

%o from sympy.solvers.diophantine.diophantine import diop_DN

%o def A045878_gen(): # generator of terms

%o for l in count(0):

%o l1, l2 = 10**(l+1), 10**l

%o yield from sorted(set(abs(y) for z in (diop_DN(10,m*(1-l1)) for m in range(10)) for x, y in z if l1 >= x**2 >= l2))

%o A045878_list = list(islice(A045878_gen(), 30)) # _Chai Wah Wu_, Apr 23 2022

%Y Cf. A000290, A045877, A035129, A090843.

%K nonn,base

%O 1,2

%A _Erich Friedman_

%E More terms from _Patrick De Geest_, Nov 15 1998