login
A045815
Integers k such that in the list of divisors of k (in base 6), each digit 0-5 appears equally often.
1
20345, 23405, 30245, 30425, 32045, 40235, 40325, 42035, 43025, 45050, 45450, 50450, 52023, 22043435, 22053335, 23234545, 23344501, 23452345, 24034455, 24243535, 24352435, 24403451, 24433051, 30034454, 30202455, 30334045, 30340454, 30424235
OFFSET
1,1
EXAMPLE
Divisors of 45050 are (1,2,3,10,4505,13414,22323,45050); the numbers of digits (0-5) are [ 0(4),1(4),2(4),3(4),4(4),5(4) ]
MAPLE
k := 0:for i from 1 to 35000 do for j from 0 to 5 do a[j] := 0:end do:c := divisors(i):for j from 1 to nops(c) do b := convert(c[j], base, 6); for h from 1 to nops(b) do a[ b[h] ] := a[ b[h] ]+1:end do:end do: if(a[0]=a[1] and a[1]=a[2] and a[2]=a[3] and a[4]=a[5]) then k := k+1:q := convert(i, base, 6):d[k] := sum(q[o+1]*10^o, o=0..nops(q)-1):end if:end do: q := seq(d[l], l=1..k);
isA045815 := proc(n) local c, j, b, h, a, q ; a := [0, 0, 0, 0, 0, 0] : c := numtheory[divisors](n): for j from 1 to nops(c) do b := convert(c[j], base, 6); for h from 1 to nops(b) do a[b[h]+1] := a[b[h]+1]+1: end do: end do: if(a[1]=a[2] and a[2]=a[3] and a[3]=a[4] and a[4]=a[5] and a[5]=a[6]) then q := convert(n, base, 6) ; add(q[o+1]*10^o, o=0..nops(q)-1) ; else -1 ; end if: end: n := 1: while true do a := isA045815(n) : if a >= 0 then printf("%d, ", a) ; fi ; n := n+1 : od : # R. J. Mathar, Jun 26 2007
CROSSREFS
KEYWORD
easy,nonn,base
EXTENSIONS
More terms from Sascha Kurz, Mar 24 2002
Corrected by R. J. Mathar, Jun 26 2007
More terms from Sean A. Irvine, Sep 26 2011
STATUS
approved