The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045815 Integers k such that in the list of divisors of k (in base 6), each digit 0-5 appears equally often. 1
 20345, 23405, 30245, 30425, 32045, 40235, 40325, 42035, 43025, 45050, 45450, 50450, 52023, 22043435, 22053335, 23234545, 23344501, 23452345, 24034455, 24243535, 24352435, 24403451, 24433051, 30034454, 30202455, 30334045, 30340454, 30424235 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Table of n, a(n) for n=1..28. Naohiro Nomoto, In the list of divisors of n,... EXAMPLE Divisors of 45050 are (1,2,3,10,4505,13414,22323,45050); the numbers of digits (0-5) are [ 0(4),1(4),2(4),3(4),4(4),5(4) ] MAPLE k := 0:for i from 1 to 35000 do for j from 0 to 5 do a[j] := 0:end do:c := divisors(i):for j from 1 to nops(c) do b := convert(c[j], base, 6); for h from 1 to nops(b) do a[ b[h] ] := a[ b[h] ]+1:end do:end do: if(a[0]=a[1] and a[1]=a[2] and a[2]=a[3] and a[4]=a[5]) then k := k+1:q := convert(i, base, 6):d[k] := sum(q[o+1]*10^o, o=0..nops(q)-1):end if:end do: q := seq(d[l], l=1..k); isA045815 := proc(n) local c, j, b, h, a, q ; a := [0, 0, 0, 0, 0, 0] : c := numtheory[divisors](n): for j from 1 to nops(c) do b := convert(c[j], base, 6); for h from 1 to nops(b) do a[b[h]+1] := a[b[h]+1]+1: end do: end do: if(a[1]=a[2] and a[2]=a[3] and a[3]=a[4] and a[4]=a[5] and a[5]=a[6]) then q := convert(n, base, 6) ; add(q[o+1]*10^o, o=0..nops(q)-1) ; else -1 ; end if: end: n := 1: while true do a := isA045815(n) : if a >= 0 then printf("%d, ", a) ; fi ; n := n+1 : od : # R. J. Mathar, Jun 26 2007 CROSSREFS Cf. A038564, A038565, A045816. Sequence in context: A234631 A343243 A156408 * A182294 A103912 A256104 Adjacent sequences: A045812 A045813 A045814 * A045816 A045817 A045818 KEYWORD easy,nonn,base AUTHOR Naohiro Nomoto EXTENSIONS More terms from Sascha Kurz, Mar 24 2002 Corrected by R. J. Mathar, Jun 26 2007 More terms from Sean A. Irvine, Sep 26 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 01:24 EDT 2023. Contains 363138 sequences. (Running on oeis4.)