login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038565
Number of times digits are repeated in A038564.
15
1, 1, 2, 1, 3, 3, 3, 3, 3, 5, 5, 3, 3, 4, 3, 3, 3, 5, 3, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,3
COMMENTS
Next term > 1 is a(221) = 7, corresponding to A038564(221) = 26300344.
LINKS
EXAMPLE
54023 [ 1(1),2(1),3(1),4(1),5(1),6(1),7(1),8(1),9(1) ],
54203 [ 1(1),2(1),3(1),4(1),5(1),6(1),7(1),8(1),9(1) ],
55868 [ 1(2),2(2),3(2),4(2),5(2),6(2),7(2),8(2),9(2) ],
500407 [ 1(1),2(1),3(1),4(1),5(1),6(1),7(1),8(1),9(1) ].
PROG
(Python)
from sympy import divisors
from collections import Counter
def okval(n):
c = Counter()
for d in divisors(n, generator=True): c.update(str(d))
return c["1"] if len(set([c[i] for i in "123456789"])) == 1 else False
print([okval(k) for k in range(1, 60000) if okval(k)]) # Michael S. Branicky, Nov 13 2022
CROSSREFS
Cf. A038564.
Sequence in context: A307558 A226273 A111353 * A344869 A248605 A239619
KEYWORD
nonn,base,easy
EXTENSIONS
More terms from Sascha Kurz, Oct 18 2001
STATUS
approved