Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Nov 14 2022 00:36:56
%S 1,1,2,1,3,3,3,3,3,5,5,3,3,4,3,3,3,5,3,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N Number of times digits are repeated in A038564.
%C Next term > 1 is a(221) = 7, corresponding to A038564(221) = 26300344.
%H Michael S. Branicky, <a href="/A038565/b038565.txt">Table of n, a(n) for n = 1..10000</a>
%e 54023 [ 1(1),2(1),3(1),4(1),5(1),6(1),7(1),8(1),9(1) ],
%e 54203 [ 1(1),2(1),3(1),4(1),5(1),6(1),7(1),8(1),9(1) ],
%e 55868 [ 1(2),2(2),3(2),4(2),5(2),6(2),7(2),8(2),9(2) ],
%e 500407 [ 1(1),2(1),3(1),4(1),5(1),6(1),7(1),8(1),9(1) ].
%o (Python)
%o from sympy import divisors
%o from collections import Counter
%o def okval(n):
%o c = Counter()
%o for d in divisors(n, generator=True): c.update(str(d))
%o return c["1"] if len(set([c[i] for i in "123456789"])) == 1 else False
%o print([okval(k) for k in range(1, 60000) if okval(k)]) # _Michael S. Branicky_, Nov 13 2022
%Y Cf. A038564.
%K nonn,base,easy
%O 1,3
%A _Naohiro Nomoto_
%E More terms from _Sascha Kurz_, Oct 18 2001