OFFSET
0,3
LINKS
FORMULA
a(n) = (1/2n) * Sum_{d|n} (phi(n/d)*C(2d-1, d-1) + phi(2n/d)*2^(d-1)). - Christian G. Bower
a(n) ~ 4^(n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 08 2017
MATHEMATICA
a[n_] := If[n == 0, 1, (1/(2*n))*DivisorSum[n, EulerPhi[n/#1]*Binomial[2*#1 - 1, #1 - 1] + EulerPhi[2*(n/#1)]*2^(#1 - 1)&]];
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 08 2017, translated from PARI *)
PROG
(PARI) a(n) = if(n==0, 1, (1/(2*n)) * sumdiv(n, d, eulerphi(n/d)*binomial(2*d-1, d-1) + eulerphi(2*n/d)*2^(d-1))); \\ Andrew Howroyd, Sep 27 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved