login
A161746
The number of equivalence classes of n-leaf binary trees with respect to contiguous pattern avoidance.
0
1, 1, 1, 2, 3, 7, 15, 43, 136
OFFSET
1,4
LINKS
Andrey T. Cherkasov and Dmitri Piontkovski, Wilf classes of non-symmetric operads, arXiv:2105.08880 [math.CO], 2021.
L. Pudwell, Pattern avoidance in trees, (slides from a talk, mentions many sequences), 2012. - N. J. A. Sloane, Jan 03 2013
Eric S. Rowland, Pattern avoidance in binary trees, arXiv:0809.0488 [math.CO], 2008-2010.
Eric S. Rowland, Pattern avoidance in binary trees, J. Comb. Theory A 117 (6) (2010) 741-758.
EXAMPLE
Representatives of the a(6) = 7 equivalence classes of 6-leaf binary trees are given in A036766, A159768, A159769, A159770, A159771, A159772, and A159773.
CROSSREFS
Cf. A099952.
Sequence in context: A289470 A368564 A213385 * A045629 A034731 A216435
KEYWORD
nonn,hard,more
AUTHOR
Eric Rowland, Jun 17 2009
EXTENSIONS
Per Cherkasov and Piontkovski, a(8) corrected by Eric Rowland, May 22 2021
a(9) from Eric Rowland, Apr 25 2024
STATUS
approved