OFFSET
0,3
REFERENCES
J. A. Hoskins, C. E. Praeger and A. P. Street, Balanced twills with bounded float length, Congress. Numerantium, 40 (1983), 77-89.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1650 (terms 0..200 from Andrew Howroyd)
J. A. Hoskins, C. E. Praeger and A. P. Street, Balanced twills with bounded float length, Congress. Numerantium, 40 (1983), 77-89. (Annotated scanned copy)
W. D. Hoskins and Anne Penfold Street, Twills on a given number of harnesses, J. Austral. Math. Soc. Ser. A 33 (1982), no. 1, 1-15.
W. D. Hoskins and A. P. Street, Twills on a given number of harnesses, J. Austral. Math. Soc. (Series A), 33 (1982), 1-15. (Annotated scanned copy)
A. P. Street, Letter to N. J. A. Sloane, N.D.
FORMULA
If n is odd, a(n) = (1/2) * (A045629 + (1/2) * C(n-1, (n-1)/2) + 2^(n-2)); if n is even, a(n) = (1/2) * (A045629 + (1/2) * C(n, n/2) + 2^(n-2)). - Christian G. Bower
MATHEMATICA
b[n_] := (1/(2*n))*DivisorSum[n, EulerPhi[n/#]*Binomial[2*# - 1, # - 1] + EulerPhi[2*(n/#)]*2^(# - 1) &]; a[0] = 1; a[n_] := (b[n] + 2^(n-2) + Binomial[n - Mod[n, 2], Quotient[n, 2]]/2)/2; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
PROG
(PARI) \\ here b is A045629
b(n) = (1/(2*n)) * sumdiv(n, d, eulerphi(n/d)*binomial(2*d-1, d-1) + eulerphi(2*n/d)*2^(d-1));
a(n) = if(n==0, 1, (b(n) + 2^(n-2) + binomial(n-n%2, n\2)/2) / 2); \\ Andrew Howroyd, Sep 27 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from David W. Wilson
STATUS
approved