login
A045344
Primes congruent to {1, 2} mod 3.
24
2, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307
OFFSET
1,1
COMMENTS
Same as A045319, except for the 2nd term. - R. J. Mathar, Jan 30 2009
Primes of the form 3*n-+1. - Juri-Stepan Gerasimov, Jan 22 2010
Primes excluding 3. - Juri-Stepan Gerasimov, Apr 20 2010
Primes p such that p^2 + 2 is composite. 3 is the only prime p such that p^2 + 2 (= 11) is prime. All numbers p^2 + 2 for primes p = 2 and p > 3 are divisible by 3. - Jaroslav Krizek, Nov 25 2013
Primes p satisfying the equation gcd(sigma(p-1), p) = 1. - Lechoslaw Ratajczak, Aug 18 2018
LINKS
FORMULA
a(n) = A000040(A065475(n)). - Reinhard Zumkeller, Dec 17 2009
MATHEMATICA
Select[Prime[Range[150]], MemberQ[{1, 2}, Mod[#, 3]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2012 *)
Drop[Prime@ Range@ 63, {2}] (* Robert G. Wilson v, Jun 04 2015 *)
PROG
(Magma) [p: p in PrimesUpTo(740)|p mod 3 in {1, 2}] // Vincenzo Librandi, Dec 18 2010
(PARI) a(n)=if(n<2, 2, prime(n+1)) \\ Charles R Greathouse IV, May 13 2011
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved