login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A042957
The sequence e when b=[ 1,1,1,0,1,1,... ].
2
1, 1, 1, 1, 2, 3, 3, 3, 5, 7, 9, 9, 11, 15, 19, 21, 25, 31, 39, 45, 53, 63, 75, 87, 103, 121, 143, 165, 193, 225, 263, 301, 347, 401, 467, 535, 613, 701, 807, 921, 1053, 1197, 1365, 1551, 1767, 2003, 2269, 2563, 2905, 3281, 3705, 4167, 4697, 5285, 5947, 6669
OFFSET
0,5
COMMENTS
Map a binary sequence b=[ b_1,... ] to a binary sequence c=[ c_1,... ] so that C=1/Product (1-x^i)^c_i == 1+Sum b_i*x^i mod 2.
This produces 2 new sequences: d={i:c_i=1} and e=[ 1,e_1,... ] where C=1+Sum e_i*x^i.
LINKS
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(u=vector(n, i, i<>4), v=vector(n)); for(n=1, #v, v[n]=(u[n] + EulerT(v[1..n])[n])%2); concat([1], EulerT(v))} \\ Andrew Howroyd, May 03 2021
CROSSREFS
Sequence in context: A036029 A181530 A035362 * A341074 A343885 A264870
KEYWORD
nonn
EXTENSIONS
Terms a(48) and beyond from Andrew Howroyd, May 03 2021
STATUS
approved