login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A042955
The sequence e when b=[ 1,1,0,1,1,... ].
2
1, 1, 1, 2, 3, 3, 5, 7, 9, 11, 15, 19, 25, 31, 39, 49, 61, 73, 91, 111, 135, 163, 197, 235, 283, 335, 399, 473, 559, 655, 773, 903, 1057, 1233, 1435, 1663, 1933, 2231, 2575, 2969, 3419, 3921, 4501, 5151, 5891, 6723, 7665, 8723, 9925, 11261, 12773
OFFSET
0,4
COMMENTS
Map a binary sequence b=[ b_1,... ] to a binary sequence c=[ c_1,... ] so that C=1/Product (1-x^i)^c_i == 1+Sum b_i*x^i mod 2.
This produces 2 new sequences: d={i:c_i=1} and e=[ 1,e_1,... ] where C=1+Sum e_i*x^i.
LINKS
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(u=vector(n, i, i<>3), v=vector(n)); for(n=1, #v, v[n]=(u[n] + EulerT(v[1..n])[n])%2); concat([1], EulerT(v))} \\ Andrew Howroyd, May 03 2021
CROSSREFS
Sequence in context: A030729 A111865 A238873 * A035553 A108961 A017984
KEYWORD
nonn
EXTENSIONS
Terms a(45) and beyond from Andrew Howroyd, May 03 2021
STATUS
approved