OFFSET
0,2
COMMENTS
The terms of this sequence can be constructed with the terms of sequence A052918.
For the terms of the periodical sequence of the continued fraction for sqrt(29) see A010128. We observe that its period is five. The decimal expansion of sqrt(29) is A010484. - Johannes W. Meijer, Jun 12 2010
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,140,0,0,0,0,1).
FORMULA
a(5*n) = A052918(3*n), a(5*n+1) = (A052918(3*n+1) - A052918(3*n))/2, a(5*n+2) = (A052918(3*n+1) + A052918(3*n))/2, a(5*n+3) = A052918(3*n+1) and a(5*n+4) = A052918(3*n+2)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: (1 + 2*x + 3*x^2 + 5*x^3 + 13*x^4 - 5*x^5 + 3*x^6 - 2*x^7 + x^8)/(1 - 140*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = 140*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 10 2013
MATHEMATICA
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[29], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011 *)
Denominator[Convergents[Sqrt[29], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
PROG
(Magma) I:=[1, 2, 3, 5, 13, 135, 283, 418, 701, 1820]; [n le 10 select I[n] else 140*Self(n-5)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, Dec 10 2013
CROSSREFS
KEYWORD
nonn,cofr,frac,easy
AUTHOR
STATUS
approved