The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038860 Numbers ending with '5' that are the difference of two positive cubes. 1
 215, 335, 485, 665, 875, 1115, 1385, 1685, 2015, 2375, 2765, 3185, 3635, 4095, 4115, 4625, 4905, 5165, 5735, 5805, 6335, 6795, 6965, 7625, 7875, 8315, 9035, 9045, 9785, 10305, 10565, 11375, 11655, 12215, 13085, 13095, 13985, 14625, 14915, 15875 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Contains (k+5(2j+1))^3-k^3 for any integers k,j>=0. - M. F. Hasler, May 31, 2007 LINKS FORMULA A number is in this sequence iff it is of the form (k+10j-5)^3-k^3, where k,j are any positive integers, since (k+d)^3 - k^3 = d(3(k+d/2)^2+d^2/4) == 5 (mod 10) iff d is odd and d == 0 (mod 5) (cf. A038853) - M. F. Hasler, Jun 07 2007 PROG (PARI) A038860(Nmax=20000, a=[]) = { local(t, j5); forstep( j=1, Nmax^(1/3)/5, 2, j5=5*j; for(k=1, sqrt((Nmax/j5-j5^2-3*j5)/3), if(Nmax

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 23:07 EST 2023. Contains 360091 sequences. (Running on oeis4.)