|
|
A038860
|
|
Numbers ending with '5' that are the difference of two positive cubes.
|
|
1
|
|
|
215, 335, 485, 665, 875, 1115, 1385, 1685, 2015, 2375, 2765, 3185, 3635, 4095, 4115, 4625, 4905, 5165, 5735, 5805, 6335, 6795, 6965, 7625, 7875, 8315, 9035, 9045, 9785, 10305, 10565, 11375, 11655, 12215, 13085, 13095, 13985, 14625, 14915, 15875
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Contains (k+5(2j+1))^3-k^3 for any integers k,j>=0. - M. F. Hasler, May 31, 2007
|
|
LINKS
|
Table of n, a(n) for n=1..40.
|
|
FORMULA
|
A number is in this sequence iff it is of the form (k+10j-5)^3-k^3, where k,j are any positive integers, since (k+d)^3 - k^3 = d(3(k+d/2)^2+d^2/4) == 5 (mod 10) iff d is odd and d == 0 (mod 5) (cf. A038853) - M. F. Hasler, Jun 07 2007
|
|
PROG
|
(PARI) A038860(Nmax=20000, a=[]) = { local(t, j5); forstep( j=1, Nmax^(1/3)/5, 2, j5=5*j; for(k=1, sqrt((Nmax/j5-j5^2-3*j5)/3), if(Nmax<t=(k+j5)^3-k^3, break); a=concat(a, t))); vecsort(a) } \\ M. F. Hasler, Jun 07 2007
|
|
CROSSREFS
|
Intersection of A017329 and A181123.
Sequence in context: A191943 A046011 A038853 * A120536 A043391 A063358
Adjacent sequences: A038857 A038858 A038859 * A038861 A038862 A038863
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Jeff Burch
|
|
EXTENSIONS
|
Corrected by M. F. Hasler, Jun 07 2007
|
|
STATUS
|
approved
|
|
|
|