login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038367
Numbers n with property that (product of digits of n) is divisible by (sum of digits of n).
9
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 22, 30, 36, 40, 44, 50, 60, 63, 66, 70, 80, 88, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 123, 130, 132, 138, 140, 145, 150, 154, 159, 160, 167, 170, 176, 180, 183, 189, 190, 195, 198, 200, 201, 202, 203
OFFSET
1,2
COMMENTS
Equal to the disjoint union of A061013 and A011540 \ {0}. Contains in particular all positive single-digit integers, those with a digit 0, and 22*{1,...,18}. If x is in the sequence, any digit-permutation of x is also in the sequence. - M. F. Hasler, Feb 28 2018
MAPLE
isA038367 := proc(n)
if type( A007954(n)/A007953(n), 'integer') then
true;
else
false;
end if;
end proc :
for n from 1 to 500 do
if isA038367(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Jun 30 2020
MATHEMATICA
okQ[n_]:=Module[{idn=IntegerDigits[n]}, Divisible[Times@@idn, Total[idn]]]
Select[Range[500], okQ] (* Harvey P. Dale, Nov 24 2010 *)
PROG
(Magma) [0] cat [n: n in [1..250] | IsIntegral(&*Intseq(n)/&+Intseq(n))]; // Bruno Berselli, Feb 09 2016
(PARI) is(n)=n&&prod(i=1, #n=digits(n), n[i])%vecsum(n)==0 \\ M. F. Hasler, Feb 28 2018
CROSSREFS
See A061013 for case where 0 digits are excluded. Cf. A055931.
Sequence in context: A308393 A009995 A190219 * A214958 A161350 A342048
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
Corrected by Vladeta Jovovic and Larry Reeves (larryr(AT)acm.org), Jun 08 2001
Erroneous 0 term removed by David A. Corneth, Jun 05 2016
STATUS
approved