login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n with property that (product of digits of n) is divisible by (sum of digits of n).
9

%I #41 Sep 08 2022 08:44:53

%S 1,2,3,4,5,6,7,8,9,10,20,22,30,36,40,44,50,60,63,66,70,80,88,90,100,

%T 101,102,103,104,105,106,107,108,109,110,120,123,130,132,138,140,145,

%U 150,154,159,160,167,170,176,180,183,189,190,195,198,200,201,202,203

%N Numbers n with property that (product of digits of n) is divisible by (sum of digits of n).

%C Equal to the disjoint union of A061013 and A011540 \ {0}. Contains in particular all positive single-digit integers, those with a digit 0, and 22*{1,...,18}. If x is in the sequence, any digit-permutation of x is also in the sequence. - _M. F. Hasler_, Feb 28 2018

%H Iain Fox, <a href="/A038367/b038367.txt">Table of n, a(n) for n = 1..10000</a>

%p isA038367 := proc(n)

%p if type( A007954(n)/A007953(n),'integer') then

%p true;

%p else

%p false;

%p end if;

%p end proc :

%p for n from 1 to 500 do

%p if isA038367(n) then

%p printf("%d,",n) ;

%p end if;

%p end do: # _R. J. Mathar_, Jun 30 2020

%t okQ[n_]:=Module[{idn=IntegerDigits[n]},Divisible[Times@@idn,Total[idn]]]

%t Select[Range[500],okQ] (* _Harvey P. Dale_, Nov 24 2010 *)

%o (Magma) [0] cat [n: n in [1..250] | IsIntegral(&*Intseq(n)/&+Intseq(n))]; // _Bruno Berselli_, Feb 09 2016

%o (PARI) is(n)=n&&prod(i=1,#n=digits(n),n[i])%vecsum(n)==0 \\ _M. F. Hasler_, Feb 28 2018

%Y See A061013 for case where 0 digits are excluded. Cf. A055931.

%K nonn,base,easy

%O 1,2

%A _Felice Russo_

%E Corrected by _Vladeta Jovovic_ and Larry Reeves (larryr(AT)acm.org), Jun 08 2001

%E Erroneous 0 term removed by _David A. Corneth_, Jun 05 2016