|
|
A037837
|
|
a(n) = Sum{|d(i)-d(i-1)|: i=1,...,m}, where Sum{d(i)*5^i: i=0,1,...,m} is the base 5 representation of n.
|
|
2
|
|
|
0, 0, 0, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 1, 0, 1, 2, 3, 3, 2, 1, 2, 3, 5, 4, 3, 2, 3, 7, 6, 5, 4, 3, 2, 3, 4, 5, 6, 2, 1, 2, 3, 4, 2, 1, 0, 1, 2, 4, 3, 2, 1, 2, 6, 5, 4, 3, 2, 3, 4, 5, 6, 7, 3, 2, 3, 4, 5, 3, 2, 1, 2, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,8
|
|
COMMENTS
|
This is the base-5 total variation sequence; see A297330. - Clark Kimberling, Jan 18 2017
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
|
|
MAPLE
|
A037837 := proc(n)
local dgs ;
dgs := convert(n, base, 5);
add( abs(op(i, dgs)-op(i-1, dgs)), i=2..nops(dgs)) ;
end proc: # R. J. Mathar, Oct 16 2015
|
|
MATHEMATICA
|
b = 5; z = 120; t = Table[Total@Flatten@Map[Abs@Differences@# &, Partition[IntegerDigits[n, b], 2, 1]], {n, z}] (* cf. Michael De Vlieger, A037834 *)
|
|
CROSSREFS
|
Cf. A297330.
Sequence in context: A260686 A037891 A037899 * A194526 A165033 A179766
Adjacent sequences: A037834 A037835 A037836 * A037838 A037839 A037840
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Clark Kimberling
|
|
EXTENSIONS
|
Updated by Clark Kimberling, Jan 20 2018
|
|
STATUS
|
approved
|
|
|
|