login
a(n) = Sum{|d(i)-d(i-1)|: i=1,...,m}, where Sum{d(i)*5^i: i=0,1,...,m} is the base 5 representation of n.
2

%I #12 Jan 20 2018 12:38:14

%S 0,0,0,0,1,0,1,2,3,2,1,0,1,2,3,2,1,0,1,4,3,2,1,0,1,2,3,4,5,1,0,1,2,3,

%T 3,2,1,2,3,5,4,3,2,3,7,6,5,4,3,2,3,4,5,6,2,1,2,3,4,2,1,0,1,2,4,3,2,1,

%U 2,6,5,4,3,2,3,4,5,6,7,3,2,3,4,5,3,2,1,2,3,3

%N a(n) = Sum{|d(i)-d(i-1)|: i=1,...,m}, where Sum{d(i)*5^i: i=0,1,...,m} is the base 5 representation of n.

%C This is the base-5 total variation sequence; see A297330. - _Clark Kimberling_, Jan 18 2017

%H Clark Kimberling, <a href="/A037837/b037837.txt">Table of n, a(n) for n = 1..10000</a>

%p A037837 := proc(n)

%p local dgs ;

%p dgs := convert(n,base,5);

%p add( abs(op(i,dgs)-op(i-1,dgs)),i=2..nops(dgs)) ;

%p end proc: # _R. J. Mathar_, Oct 16 2015

%t b = 5; z = 120; t = Table[Total@Flatten@Map[Abs@Differences@# &, Partition[IntegerDigits[n, b], 2, 1]], {n, z}] (* cf. Michael De Vlieger, A037834 *)

%Y Cf. A297330.

%K nonn,base

%O 1,8

%A _Clark Kimberling_

%E Updated by _Clark Kimberling_, Jan 20 2018