login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036924
Digit sum of composite even number equals digit sum of juxtaposition of its prime factors (counted with multiplicity).
2
4, 22, 58, 94, 166, 202, 274, 346, 378, 382, 438, 454, 526, 562, 576, 588, 634, 636, 648, 654, 666, 690, 706, 728, 762, 778, 852, 922, 958, 1086, 1282, 1284, 1376, 1626, 1642, 1678, 1736, 1776, 1822, 1842, 1858, 1872, 1894, 1908, 1952, 1962, 1966, 2038
OFFSET
1,1
COMMENTS
Even Smith numbers. - Robert Israel, Aug 24 2024
LINKS
MAPLE
filter:= proc(n) local F;
F:= ifactors(n)[2];
convert(convert(n, base, 10), `+`) = convert(map(t -> t[2]*convert(convert(t[1], base, 10), `+`), F), `+`)
end proc:
select(filter, [seq(i, i=4..10000, 2)]); # Robert Israel, Aug 24 2024
MATHEMATICA
d[n_] := IntegerDigits[n]; co[n_, k_] := Nest[Flatten[d[{#, n}]]&, n, k-1]; t={}; Do[If[!PrimeQ[n] && Total[d[n]] == Total[Flatten[d[co@@@FactorInteger[n]]]], AppendTo[t, n]], {n, 4, 2040, 2}]; t (* Jayanta Basu, Jun 04 2013 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Jan 04 1999
EXTENSIONS
Title made more precise by Sean A. Irvine, Nov 30 2020
STATUS
approved